Data Analysis Load Balancer

Design Document: Version: 1.0

Last saved by Chris Small

April 12,2010

Abstract:

The project is to design a mechanism to load balance network traffic over multiple
different links. The load balancer application will utilize an OpenFlow enabled
switch to divide traffic by algorithm and send mirrored traffic to multiple Intrusion
Detection System (IDS) devices to analyze network traffic.

Components

The load balancer will consist of a number of modular components that should work
fairly independent of each other. This should allow reuse of components and allow
us to utilize existing software.

The main components are:

* Web-based User Interface

* Database/Persistent store of rules
* Rules module

* OpenFlow enable switch(es)

e Statistics collection module

e Status monitor module

It is hoped that the status and statistics module can reuse some of the code that has
been developed as part of the GENI OpenFlow campus trials, SNAPP and the open-
source Nagios monitoring software.

The modular design also should allow reuse of the components and modules by
other OpenFlow tools. For example the rules database and module can be used by
OpenFlow applications other than Load Balancing (ACL distribution, VM aware
migration, etc.)

Component Diagram

LoadBalancer App
)) OpenFlow
Web Ul Signaling API Rules Switch
Module
saL saL - OpenFlow OpenFlow
DataBase Monitoring Switch
Module
OpenFlow
Status Switch
Module
Web Based Ul

The Web based Ul will be the primary interface for users to manipulate the Load
Balancer rules. It will also provide a central portal to statistic and status collections.

It will have a number of “tabs” for:

* Status - The status from each port. Ideally this will include application based
tests and threshold tests. Threshold tests would detect if there were no
traffic flowing over an expected path. Application based tests would detect
that there is an application running. For purposes of the data analysis this
may be a simple check that make sure the collection program is running.

e Statistics - Group or Switch based stats. May initially just be a link to the
SNAPP frontend but a consistent interface would be ideal

* Admin - Interface to define the rules to distribute the traffic

* Help - Help documentation

Groups are user-defined descriptions of a rule that describes the traffic and the
input and output ports associated with it. For example, a Group may send all traffic
with destination TCP port 80. In the case of source and destination IP addresses you
can distinguish a hash size such as a /23 where the load balancers will divide traffic
into buckets of /23 and distribute to all ports selected as part of the group.

Mockup of the status page

e e
- -
=22 GlobalNOC Load Balancer
.'»h' Global Research Network Operations Center
| Status | Statistics | Admin | Help |
Switch: load_bal1.ul.net.uits.iu.edu ©
Input Ports:
Port 0/1 - br.ul.net.uits.iu.edu Ge2/24: @ Stats History
Port 0/2 - br2.ul.net.uits.iu.edu Ge2/24: @ Stats History
Output Ports:
Port 0/3 - snort1.ul.net.uits.iu.edu eth1: @ Stats History
Port 0/4 - snort2.ul.net.uits.iu.edu eth1: @ Stats History
Port 0/5 - snort3.ul.net.uits.iu.edu eth1: @ Stats History
Port 0/6 - snort4.ul.net.uits.iu.edu eth1: @ Stats History
X-Connect Ports:
Port 0/24 - load_bal1.bldc.net.uits.iu.edu : @ Stats History

Switch: load_bal1.bldc.net.uits.iu.edu

Mockup of the statistics page
'a.

'--' Ehs GIobaINOC Load Balancer

- Global Research Network Operations Cent

| Status | Statistics | Admin | Help |
By Group
By Switch

Switch: load_bal1.ul.net.uits.iu.edu

Fri Apr 8 2011 09:15 to Fri 08 Apr 2011 10:15:41 EDT

asc | nbound Bits per Second
BB Gutbound Bits per Second
sc

zsc

za

s:20 o:30 s:40 o:50 10:00 1010

Input Ports:
Total Input:

Fri Apr 8 2011 09:15 to Fri 08 Apr 2011 10:15:41 EDT

asG ¥ inbound Bits per Second
B o utbound Bits per Second

s:20 s:30 s:40 o:50 10:00 1010

Port 0/1 - br.ul.net.uits.iu.edu Ge2/24-:

Fri Apr 8 2011 09:15 to Fri 08 Apr 2011 10:15:41 EDT

ssa W |nbound Bits per Second
BB o tbound Bits per Second

o:20 o:30 9:40 o:50 10:00 10:10

Output Ports:

X-Connect Ports:

Switch: load_bal1.bldc.net.uits.iu.edu

Mockup of the admin add page

by
y

i

"
1

GlobalNOC

|

Load Balancer

| Status | Statistics

| Admin

Help |
Add a Group

Modify Group
Define X-Connect

Group: TCP80-DST
Switch Pulldown

Port TextBox
Input Ports [_load bali.bidc]| | 0-3,5 |
Output Ports Switch Pulldown Port TextBox

[load_bali.bldc | | 6-7 |
Selection

Selection Pulldown Value TextBox

SRC IP [80 |

DEST IP

TCP DEST Port

TCP SRC Port
Priority [10 |

| Clear | | Apply
Group: DEST-IP
Switch Pulldown Port TextBox

Input Ports [load ballibldc | | 03,5 |
Output Ports Switch Pulldown Port TextBox

[load_bali.bldc | [6-7 |
Selection

Selection Pulldown Value TextBox

SRC IP [129.79.0.0/24 |

DEST IP

TCP DEST Port

TCP SRC Port
Priority [20 |

Clear

Apply

Mockup of the admin mod page

:::'f-f-? GlobaINOC Load Balancer

obal Resea
-

| Status | Statistics | Admin | Help
Add a Group
Modify Group
Define X-Connect
Group: TCP80-DST Priority 10
Group: Dest-IP Priority 20
Output Ports
load_bal1.bldc 0/5 - snort1.bldc
Dest IP 129.79.0.0/22 Modfy
load_bal1.bldc 0/6 - snort2.bldc
Dest IP 129.79.4.0/22 Modfy
load_bal1.bldc 0/7 - snort3.bldc
Dest IP 129.79.8.0/22 Modfy
Clear | | Apply

Database

The OpenFlow rules for each switch connected to the load balancer application are
stored in a SQL database. This allows for easy manipulation of the rules by the user
interface and simplifies the rules module. All the rules module needs to do is
synchronize the rules set between the Database and the switch.

The initial tables expected are:

* node - contains switches known to the application

* port - Interfaces on each switch - description, speed

e of rule - Each rule contained on each switch

* trunk - contains internal routing (i.e. x-connect information) - Initially only
assume a L2 connection between each load balancer but eventually may
contain multiple intermediate OpenFlow enabled switches in the path

A SQL database may add some additional overhead in the latency of distributing a
rule to the switches in the network. However for applications where the reliability
and easy of use is more important than the latency in inserting a rule a SQL database
has many advantages. It will make it much easier to have check pointing and
recovery. For a load balancer where the rules are pre-populated and long-lived high
speed population of rules is not essential.

Load Balancing Application

The load balancer application consists of 3 parts, a rule generator, a statistics
collector and a status monitor. All three modules will communicate with the
switches over a shared connection. A Flowvisor! like mechanism with some
virtualization of each module is an option but the initial work will look at a shared
connection inside the application.

Rules module

The rule generator simply fetches a set of rules from the SQL database and
synchronizes the rules with a remote switch. A signaling API will be provided for
applications to signal the rules module to synchronize a single switch or set of rules.

Statistics

The statistics module will collect aggregate and port level statistics over the
OpenFlow interface. There is the possibility it may utilize out of band mechanisms
(SNMP, RANCID) to obtain or modify some information not available through the
OpenFlow protocol such as the description for each port configured on the switch.

L Flowvisor - http://www.openflow.org/wk/index.php/FlowVisor

The IU Measurement Manager? statistic collection toll is expected to provide much
of the code for the statistics module. It utilizes the open-source SNAPP collection
infrastructure to store and provide an interface to data collected.

An example of the SNAPP OpenFlow interface is located at:
http://gmoc-db.grnoc.iu.edu/nlr-of

Monitoring

One requirement of the load balancer is to detect when there is an issue with either
the input of data or with one of the data analysis nodes. The problems would be
visible through the Load Balancer UI. These alarms should also be able to be passed
to external programs.

The monitoring module will utilize the Nagios software tool. The Load Balancer SQL
database should provide the necessary information for an automatic configuration
on the Nagios configuration. This module will also leverage some existing work in
the Measurement Manager application.

Initially the tests will check for:

* Thresholds on input and output traffic - Test if utilization is to high or to low
* Interface status test
* Test that collection application (bro, snort) is working

The Nagios plugin mechanism should provide plenty of flexibility for adding
different application tests for application other than a data analysis app. For
example, a http check could be added for web load balancing in the future.

It is also expected that the alarms will feed into set of actions that will occur if an
alarm is seen. If a collection node goes down traffic could be redirected to a hot
spare or the rules rewritten to redirect the traffic. This may be handled by the
monitoring app utilizing some of the functions inside Nagios or a special code
written. This will be controlled by configurations generated by the user UL

Switches
In order to build the data analysis infrastructure we need to have a set of
requirement s for the Switch and firmware chosen MUST:

* Support at least the OpenFlow 1.0 spec

* Allow for hardware matching of IP src and dst wildcard rules and TCP
port

* Have atleast 12 10Gb/sec ports

* Support SSL keys for authentication of controllers and switches

2 Measurement Manager - http://groups.geni.net/geni/attachment/wiki/OFIU-
GEC10-status/IU_OF_GEC10_poster.pdf

In addition having these features it would be advantageous that a switch allowed
multicasting of frames to multiple physical ports.

Having group based hash support such as OpenFlow 1.1 option could improve the
ability of the distribute traffic more easily and minimize the number of rules.

Exports

The load balancer application should export a copy of the how it distributes
software to assist the data analysis software. Format and mechanism is to be
determined.

Security

With the ability to redirect packet capture traffic control on the rules is very
important.

The load balancing application MUST:

¢ Authenticate switches and controllers to each other using the OpenFlow
security mechanisms
* Ensure adequate authentication on the web interface

Testing

The load balancing application needs to send a simulated or captured flow and
insure traffic is complete and distributed over multiple ports. Functional tests of all
major functions in the Ul function properly.

Future Ideas and Work

Currently there isn’t any mechanism to have affinity of a connection based on
previous connections. Since data analysis is only examine the packets it is outside
the scope of this project but would be desirable for a general load balancing
solution. Some academic work has been done on load balancing using OpenFlow
that may be utilized.3

The central concept of the load balancer application is to be modular to 1) allow for
independent modules of modules 2) reuse of modules include existing code. Module
connections should allow other applications to be easily added to the infrastructure
to combine functions. For example, a Layer 2 topology application can be
incorporated with the load balancing application to allow load balancing over a

3 OpenFlow-Based Server Load Balancing Gone Wild, R. Wang, D. Butnariu, and J.
Rexford, Princeton University Hot-ICE 2011
http://www.usenix.org/event/hoticel1/tech/full_papers/Wang_Richard.pdf

large set of interconnected switches, such as in a data center or across wide area
networks. Similar integration could happen with OpenFlow applications such as VM
migration.

Load balancer infrastructure

IDS
Host
T ——
IDS
Host
Core T ——
Equipment DS
Host
T ——
IDS
Qore Host
Equipment —
OpenFlow IDS

N
Enabled Host

Core Switch
Equipment \ IDS
Host
Core
Equipment

IDS
Host

IDS
Host

Control Traffic

IDS
Host

[
|

IDS
Host

10

