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How is Intrusion Detection done 
today? 
•  At least a border mirror 
•  Mirror feed may be oversubscribed 
•  Often one box per router Border 

Router 

Intrusion 
Detection 
Sensor 

Internal 
Router 

Intrusion 
Detection 
Sensor 
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Old IDS @ IU 

•  Started out as a surplus Dell desktop with 
10Mb/s border feed 

•  Datacenter feeds / some core routers 
•  Prone to packet loss 

•  10Gb/s mirrors to 1Gb/s fiber 
•  Media converter to 1Gb/s copper 

 
•  1:1 feeds to sensors 
•  Multi-core with multiple snort instances 

•  BPF “load balancing” 
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Network Master Plan 

•  Started in 2008 
•  Overhaul core network infrastructure at IUB 

and IUPUI 
•  Security funding included 
•  Goals of core overhaul 

•  All buildings dual-homed 
•  At least 10 Gb/s everywhere 

•  Population at IUB/IUPUI : 85,000 
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The final product 
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Mirrors 

•  Unidirectional mirrors 
•  Copy outbound pkts at border 
•  Copy inbound pkts on core routers 
•  9 @ IUB / 7 @ IUPUI 

•  Copied traffic sent via fiber to IDS 
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Router pairs 

•  Core routers are paired 
•  Routers are in separate buildings 

•  Pairs service multiple buildings 
•  Traffic can route to a building via either router 

in a pair 
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Internet egress 
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Beyond single box IDS 

•  Large systems can handle multi-gigabit 
•  Adding capacity? 
•  multiple feeds? 

•  16 feeds across two campuses 
•  We need a load balancer!  And a cluster! 

R1 R2 R3 

Load Balancer 

IDS1 IDS2 IDS3 IDS4 IDS5 IDS6 
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Load balancing : Build Your Own 

•  Software load balancing 
o  1 Gb  
o  Does not scale to multiple feeds 

•  Surplus routers or switches 
o  Lack of access to spare routers 
o  Hardware warranty support 
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Load balancing : Commercial 

•  Many excellent solutions 
•  Even on a reasonably well funded project, 

still too expensive 
•  Limited ability to customize load balancing for 

issues unique to research and academic 
networking 
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Enter OpenFlow 

•  InCNRTE  
•  Practical applications for OpenFlow 
•  Access to programming skill 
•  Access to hardware for testing and 

development 
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What is OpenFlow? 

•  A dominant component of Software Defined 
Networking 

l  Implemented by several vendors  
l  Compromise between research demands 

and network vendors’ requirements 
l  Currently deployed on several campuses  
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Control Plane and Data Plane 

l  Network devices have a control plane and a 
data plane  

l  Vendors have both controller plane and data 
plane locked as part of the firmware 

l   OpenFlow separates the control plane and 
opens it for researchers  

Conventional L2 Switch 

Data Plane Control 
Plane 

OpenFlow Switch 

Data Plane 

Control 
Plane 

Commodity Server 
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Benefits of separating the planes 

l  Control Plane becomes part of the 
application development 

l  Interaction with heterogeneous switches  
l  Enhances Research and innovation 
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Controller 
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Control Plane 

Switch  
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Control plane 

l  Done by a controller using commodity 
hardware/software 

l  Controller usually implemented in high level 
language  

o  Beacon   
o  NOX 
o  Floodlight 
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Interaction with data plane 

l  Insert/modify flows 
l  Up/down ports 
l  Gather statistics 
l  Detect switch changes 

OpenFlow  
Switch 

Controller 
Insert/Delete Flow 

Gather statistics 

Port up/down notification 
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What are flows? 

l  Headers to match against packets 
l  Counters for the rules 
l  Actions 

Data Plane 
Flow 1 
Flow 2 
Flow n 

Header Fields 
Nw_src 

=192.168.1.5, 
Nw_proto=tcp 

Counters 
Packet match: 

326 

Actions 
Output to ports: 

5,6 

Flow 1: 
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Headers Fields 

l  What are  header fields? 
l  Matches can be based on several factors 

related to layers 2-4 and vlan among others 
l  Masking is possible 
l  Priority 
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Matches 

l  Flow matches can be based on several 
factors related to layers 2-4 and vlan among 
others 

l  Masking is possible 
l  Priority 
l  Timer 
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Actions 

l  Output 
l  Set/strip VLAN id 
l  Set data link src/dst 
l  Set IP src/dst 
l  Set network Type of Service 
l  Set transport src/dst 
l  Set 802.1q priority 
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Flow examples 

Header Fields 
Nw_src 
=192.168.1.5, 
Nw_proto=tcp,  
Priority=100 

Counter 
326 

Actions 
Output to ports: 
5,6 

Header Fields 
dl_type 
=0x86DD 

Counter 
45 

Actions 
NONE 

Header Fields 
dl_type 
=0x0800, 
Priority=50 

Counter 
1488 

Actions 
Output to ports: 
9 
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FlowScale 

l  Using Top of Rack switch to evenly 
distribute traffic (incoming and outgoing) 

l  Process feeds at a rate of 10Gbit/s 
l  Resilience  
l  Mirroring traffic 
l  Responsive to alerts 

Sensors  

IU Network 
(Border & Core 
Routers) 

OpenFlow 
Switch 
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Load Distribution 

•  Even distribution between the multiple 
sensors 

•  Session information may not be broken 
•  Certain traffic trends might need to be 

moved/dropped on demand 
•  Rules can be up to layer 4 

R1 

R2 

R3 

OpenFlow 
Switch 

X1 

X2 

X3 

sum(Xi)/4 

sum(Xi)/4 

sum(Xi)/4 

sum(Xi)/4 

Sensors 
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Load Distribution 

•  Even distribution between the multiple 
sensors 

•  Session information may not be broken 
•  Certain traffic trends might need to be 

moved/dropped on demand 
•  Rules can be up to layer 4 

R1 

R2 

R3 

192.168.1.1,80 

192.168.1.1,80 

192.168.1.1,80 

192.168.1.1,80 

Sensors OpenFlow 
Switch 



27 

Load Distribution 

•  Even distribution between the multiple 
sensors 

•  Session information may not be broken 
•  Certain traffic trends might need to be 

moved/dropped on demand 
•  Rules can be up to layer 4 

R1 

R2 

R3 

OpenFlow 
Switch 

Monitor 
tcp,udp port 
53 

X1 

X2 

X3 
Sensors 
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•  Bandwidth of controller channel causes a 
bottleneck 

•  Effectiveness? 
•  Need to keep processing in hardware 
 

R1 

R2 

R3 

Sensor 1 

Sensor 2 

Sensor 3 

Flow 1 

1. Incoming packet 

2. Add flow 1 

OpenFlow 
Switch Flow 2 

s/w processing 

Reactive Load balancing 
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Predefined rules 

•  Divide IU’s subnets into more fine-grained 
chunks  

•  Distribute subnets over the sensors in a 
round robin fashion 

•  Allow different IU subnets to have more fine-
grained flows than others 

R1 

R2 

R3 
OpenFlow 

Switch 

Sensor 1 

Sensor 2 

Sensor 3 

1. Controller Connects 
with switch 

2. Install flows 
 into switch 
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Predefined rules 

192.168.1.0/24 172.16.0.0/16 

192.168.1.0/25 (src) 
192.168.1.0/25 (dst) 

 
192.168.1.128/25 (src) 
192.168.1.128/25 (dst) 

4 flows 

172.16.0.0/18 (src) 
172.16.0.0/18 (dst) 

 
172.16.64.0/18 (src) 
172.16.64.0/18 (dst) 

 
172.16.128.0/18 (src) 
172.16.128.0/18 (dst) 

 
172.16.192.0/18 (src) 
172.16.192.0/18 (dst) 

 
 
 
 

8 flows 
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Hot swapping flows 

R1 

R2 

R3 

Sensor 1 

Sensor 2 

Sensor 3 

OpenFlow 
Switch 

•  OpenFlow allows us to modify actions of 
rules 

•  In a defined intervals move flows from 
sensors with a high load, to others with a 
lower load 
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Hot swapping flows 

R1 

R2 

R3 

Sensor 1 

Sensor 2 

Sensor 3 

OpenFlow 
Switch 

•  OpenFlow allows us to modify actions of 
rules 

•  In a defined intervals move flows from 
sensors with a high load, to others with a 
lower load 



33 

Resilience  
•  Listen to switch for port up/down status 
•  Port DOWN: move flows to other sensors 
•  Port UP: move flows from other sensors to 

new sensor 

R1 

R2 

R3 

Sensor 1 

Sensor 2 

Sensor 3 

OpenFlow 
Switch 
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Resilience  
•  Listen to switch for port up/down status 
•  Port DOWN: move flows to other sensors 
•  Port UP: move flows from other sensors to 

new sensor 

R1 

R2 

R3 

OpenFlow 
Switch 

Sensor 1 

Sensor 2 

Sensor 3 
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Mirroring Traffic 

•  Every flow with an action can have another 
action added that corresponds to the 
mirroring sensor 

R1 

R2 

R3 

OpenFlow 
Switch 

Sensor 1 

Sensor 2 

Sensor 3 
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Responsive to alerts 

•  E.g. Kernel panic 
•  Nagios sends an alert to the controller 

indicating that the sensor’s process is down 
•  Controller sends a port DOWN message to 

the switch,  allowing the controller to behave 
the same way as if the link actually went 
down 

Sensor 1 

Sensor 2 

Sensor 3 
IU Network Traffic 

2. Down  
Sensor 1  
interface Nagios 

1. Kernel Panic! 

OpenFlow 
Switch 
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Responsive to alerts 

•  E.g. Kernel panic 
•  Nagios sends an alert to the controller 

indicating that the sensor’s process is down 
•  Controller sends a port DOWN message to 

the switch,  allowing the controller to behave 
the same way as if the link actually went 
down 

Sensor 1 

Sensor 2 

Sensor 3 
IU Network Traffic 

Nagios 

OpenFlow 
Switch 
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Sensor 12 
Sensor 12 

Default IP  
and IPv6 

Bro  
Sensors 

Snort Sensors 
Mirrored  
Sensors 1- 7 

Default IP  
and IPv6 

IUB Controller 
IUPUI Controller 

Sensor 1 

Sensor 2 

Sensor 7 

Sensor 8 

Sensor 11 

Pronto 
Switch 

Sensor 1 

Sensor 7 

Sensor 8 

Sensor 11 

IBM Switch 

Bro  
Sensors 

Snort Sensors 
Mirrored  
Sensors 1- 7 

tunnel 

Sensor 2 
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Results – Load Distribution 
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Results – Load Distribution 
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Results – Mirroring 
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Summary 

ü  Load Distribution  
ü  Resilience 
ü  Mirroring 
ü  Responsive to external alerts 
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Limitations and future work 

•  Limitations 
•  Session breaking 
•  Most software is still beta 
•  IPv6 

•  Future work 
•  More fine-grained flows 
•  Distribute flows based on weight of 

each sensor 
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IDS cluster hardware 

•  Dell R510 – manager 
o  12 core / 24 GB / 1.5 TB 

•  Dell R310 – OpenFlow controller 
•  Dell R410 (12) – workers 

o  12 core / 24 GB / 300 GB SAS 
o  Myricom 10Gb NIC 
o  HP Direct-Attach Cables 

•  FreeBSD 8 
•  Configuration management with Master 

Source 
•  Intra-cluster networking via private VLAN 
•  Load balanced traffic received via HP DAC 
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Another layer of load balancing – 
Myricom Sniffer10G 

l  Multiple ring buffers presented to OS 
l  Can perform IP-based load balancing or 

duplicate traffic to all rings 
l  Myricom provides a libpcap wrapper 
l  Sniffer10G controlled by environment 

variables 

l  Libpcap wrapper obscures per-ring stats 
l  Hard to gauge packet loss in snort 
l  Myricom provides tools to read packet 

counters and measure bandwidth at the NIC 
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Software stack 

l  Bro = Network analysis framework 
l  Programmable 
l  Acts like a protocol parser/logger 

l  Bro running on nodes 1-7 
l  10 workers per node 

l  Snort = packet grepper extraordinaire 
l  Snort running on nodes 8-11 

l  7 snort instances per node 
l  Node 12 monitor IPv6 traffic and catchall 

IPv4 traffic 
l  Node 12 is also our “tcpdump” host 
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Performance numbers 

l  IUB : 1.5 million pkt/sec / 3 Gb/s average 
l  IUB : Currently 500-750k / 1.5 Gb/s average 
l  Bro capture_loss 

l  3-5%  
l  Short term spikes above 10% 



48 

Future cluster improvements 

l  FreeBSD Netmap 
l  Automate OS builds with NanoBSD 
l  Expand Bro usage  
l  Use Snort for heavy packet inspection 

l  Think DLP 
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Thank you. 

•  Keith Lehigh: klehigh@iu.edu 

•  Ali Khalfan: ali.khalfan@gmail.com 

•  InCNTRE : incntre.iu.edu 

•  FlowScale : www.openflowhub.org/display/
FlowScale/FlowScale+Home 


