
Multi-Gigabit Intrusion Detection with
OpenFlow and Commodity Clusters

Copyright Ali Khalfan / Keith Lehigh 2012. This work is the
intellectual property of the authors. Permission is granted for
this material to be shared for non-commercial, educational
purposes, provided that this copyright statement appears on
the reproduced materials and notice is given that the copying
is by permission of the authors. To disseminate otherwise or to
republish requires written permission from the authors.

Multi-Gigabit Intrusion Detection with
OpenFlow and Commodity Clusters

Keith Lehigh
University Information Security Office
Indiana University

Ali Khalfan
InCNTRE
Indiana University

May 16, 2012

3

How is Intrusion Detection done
today?
•  At least a border mirror
•  Mirror feed may be oversubscribed
•  Often one box per router Border

Router

Intrusion
Detection
Sensor

Internal
Router

Intrusion
Detection
Sensor

4

Old IDS @ IU

•  Started out as a surplus Dell desktop with
10Mb/s border feed

•  Datacenter feeds / some core routers
•  Prone to packet loss

•  10Gb/s mirrors to 1Gb/s fiber
•  Media converter to 1Gb/s copper

•  1:1 feeds to sensors
•  Multi-core with multiple snort instances

•  BPF “load balancing”

5

Network Master Plan

•  Started in 2008
•  Overhaul core network infrastructure at IUB

and IUPUI
•  Security funding included
•  Goals of core overhaul

•  All buildings dual-homed
•  At least 10 Gb/s everywhere

•  Population at IUB/IUPUI : 85,000

6

The final product
IU Core Network
Campus Routing Summary

Indiana Gigapop
(to Internet)

Bldg Serial
Links "Greeknet"

Serial Links

T1
Links T3

(fractionalized)

br2.hper
MX480

br2.ul
MX480

SX

SX

cr2.ul
MX480

cr3.it
MX480

cr3.ul
MX480 cr4.hper

MX480
cr4.bldc
MX480

cr3.hper
MX480

serial.ul
Cisco 7200

serial.hper
Cisco 7200

LX

Port Channel 10
GBase-ZR

br2.bldc
MX480

cr3.bldc
MX480

br2.it
MX480

cr2.it
MX480

SR

SR

SR

LR

LR

LX

cr5.hper
MX480

cr5.bldc
MX480

SR

SR

LR

SR
(MPLS VPNs)

HP 5400

LR

i-Light rtsw.bltn.ilight.net
(to regionals)

LR

10GBase-LR
(via iLight wave)

fw-pci.bldcLX

LR

SR

SR SR

LR

L2 Port Channel

L3 Port Channel

LR

LR

SR

SR

SR SR

fw1.bldcfw2.bldc

dcr4.bldc
MX960

dcr3.bldc
MX960

NSRP

fw-pci.it LX

SR
(MPLS
VPNs)

LR SR

L2 Port Channel

L3 Port Channel

SR
LR

LR
SR SR

fw1.itfw2.it

dcr1.it
MX960 dcr2.it

MX960

NSRP

SR LR

LR

LR

rtsw.iupui.ilight.net
(to regionals)

via iLight
wave

SR

0/0/0

SR
SR

7

Mirrors

•  Unidirectional mirrors
•  Copy outbound pkts at border
•  Copy inbound pkts on core routers
•  9 @ IUB / 7 @ IUPUI

•  Copied traffic sent via fiber to IDS

8

Router pairs

•  Core routers are paired
•  Routers are in separate buildings

•  Pairs service multiple buildings
•  Traffic can route to a building via either router

in a pair

9

Internet egress

10

Beyond single box IDS

•  Large systems can handle multi-gigabit
•  Adding capacity?
•  multiple feeds?

•  16 feeds across two campuses
•  We need a load balancer! And a cluster!

R1 R2 R3

Load Balancer

IDS1 IDS2 IDS3 IDS4 IDS5 IDS6

11

Load balancing : Build Your Own

•  Software load balancing
o  1 Gb
o  Does not scale to multiple feeds

•  Surplus routers or switches
o  Lack of access to spare routers
o  Hardware warranty support

12

Load balancing : Commercial

•  Many excellent solutions
•  Even on a reasonably well funded project,

still too expensive
•  Limited ability to customize load balancing for

issues unique to research and academic
networking

13

Enter OpenFlow

•  InCNRTE
•  Practical applications for OpenFlow
•  Access to programming skill
•  Access to hardware for testing and

development

14

What is OpenFlow?

•  A dominant component of Software Defined
Networking

l  Implemented by several vendors
l  Compromise between research demands

and network vendors’ requirements
l  Currently deployed on several campuses

15

Control Plane and Data Plane

l  Network devices have a control plane and a
data plane

l  Vendors have both controller plane and data
plane locked as part of the firmware

l  OpenFlow separates the control plane and
opens it for researchers

Conventional L2 Switch

Data Plane Control
Plane

OpenFlow Switch

Data Plane

Control
Plane

Commodity Server

16

Benefits of separating the planes

l  Control Plane becomes part of the
application development

l  Interaction with heterogeneous switches
l  Enhances Research and innovation

Database

Web
Server

Controller
Application

Control Plane

Switch
Vendor A

Switch
Vendor B Another Host

University
Network

17

Control plane

l  Done by a controller using commodity
hardware/software

l  Controller usually implemented in high level
language

o  Beacon
o  NOX
o  Floodlight

18

Interaction with data plane

l  Insert/modify flows
l  Up/down ports
l  Gather statistics
l  Detect switch changes

OpenFlow
Switch

Controller
Insert/Delete Flow

Gather statistics

Port up/down notification

19

What are flows?

l  Headers to match against packets
l  Counters for the rules
l  Actions

Data Plane
Flow 1
Flow 2
Flow n

Header Fields
Nw_src

=192.168.1.5,
Nw_proto=tcp

Counters
Packet match:

326

Actions
Output to ports:

5,6

Flow 1:

20

Headers Fields

l  What are header fields?
l  Matches can be based on several factors

related to layers 2-4 and vlan among others
l  Masking is possible
l  Priority

21

Matches

l  Flow matches can be based on several
factors related to layers 2-4 and vlan among
others

l  Masking is possible
l  Priority
l  Timer

22

Actions

l  Output
l  Set/strip VLAN id
l  Set data link src/dst
l  Set IP src/dst
l  Set network Type of Service
l  Set transport src/dst
l  Set 802.1q priority

23

Flow examples

Header Fields
Nw_src
=192.168.1.5,
Nw_proto=tcp,
Priority=100

Counter
326

Actions
Output to ports:
5,6

Header Fields
dl_type
=0x86DD

Counter
45

Actions
NONE

Header Fields
dl_type
=0x0800,
Priority=50

Counter
1488

Actions
Output to ports:
9

24

FlowScale

l  Using Top of Rack switch to evenly
distribute traffic (incoming and outgoing)

l  Process feeds at a rate of 10Gbit/s
l  Resilience
l  Mirroring traffic
l  Responsive to alerts

Sensors

IU Network
(Border & Core
Routers)

OpenFlow
Switch

25

Load Distribution

•  Even distribution between the multiple
sensors

•  Session information may not be broken
•  Certain traffic trends might need to be

moved/dropped on demand
•  Rules can be up to layer 4

R1

R2

R3

OpenFlow
Switch

X1

X2

X3

sum(Xi)/4

sum(Xi)/4

sum(Xi)/4

sum(Xi)/4

Sensors

26

Load Distribution

•  Even distribution between the multiple
sensors

•  Session information may not be broken
•  Certain traffic trends might need to be

moved/dropped on demand
•  Rules can be up to layer 4

R1

R2

R3

192.168.1.1,80

192.168.1.1,80

192.168.1.1,80

192.168.1.1,80

Sensors OpenFlow
Switch

27

Load Distribution

•  Even distribution between the multiple
sensors

•  Session information may not be broken
•  Certain traffic trends might need to be

moved/dropped on demand
•  Rules can be up to layer 4

R1

R2

R3

OpenFlow
Switch

Monitor
tcp,udp port
53

X1

X2

X3
Sensors

28

•  Bandwidth of controller channel causes a
bottleneck

•  Effectiveness?
•  Need to keep processing in hardware

R1

R2

R3

Sensor 1

Sensor 2

Sensor 3

Flow 1

1. Incoming packet

2. Add flow 1

OpenFlow
Switch Flow 2

s/w processing

Reactive Load balancing

29

Predefined rules

•  Divide IU’s subnets into more fine-grained
chunks

•  Distribute subnets over the sensors in a
round robin fashion

•  Allow different IU subnets to have more fine-
grained flows than others

R1

R2

R3
OpenFlow

Switch

Sensor 1

Sensor 2

Sensor 3

1. Controller Connects
with switch

2. Install flows
 into switch

30

Predefined rules

192.168.1.0/24 172.16.0.0/16

192.168.1.0/25 (src)
192.168.1.0/25 (dst)

192.168.1.128/25 (src)
192.168.1.128/25 (dst)

4 flows

172.16.0.0/18 (src)
172.16.0.0/18 (dst)

172.16.64.0/18 (src)
172.16.64.0/18 (dst)

172.16.128.0/18 (src)
172.16.128.0/18 (dst)

172.16.192.0/18 (src)
172.16.192.0/18 (dst)

8 flows

31

Hot swapping flows

R1

R2

R3

Sensor 1

Sensor 2

Sensor 3

OpenFlow
Switch

•  OpenFlow allows us to modify actions of
rules

•  In a defined intervals move flows from
sensors with a high load, to others with a
lower load

32

Hot swapping flows

R1

R2

R3

Sensor 1

Sensor 2

Sensor 3

OpenFlow
Switch

•  OpenFlow allows us to modify actions of
rules

•  In a defined intervals move flows from
sensors with a high load, to others with a
lower load

33

Resilience
•  Listen to switch for port up/down status
•  Port DOWN: move flows to other sensors
•  Port UP: move flows from other sensors to

new sensor

R1

R2

R3

Sensor 1

Sensor 2

Sensor 3

OpenFlow
Switch

34

Resilience
•  Listen to switch for port up/down status
•  Port DOWN: move flows to other sensors
•  Port UP: move flows from other sensors to

new sensor

R1

R2

R3

OpenFlow
Switch

Sensor 1

Sensor 2

Sensor 3

35

Mirroring Traffic

•  Every flow with an action can have another
action added that corresponds to the
mirroring sensor

R1

R2

R3

OpenFlow
Switch

Sensor 1

Sensor 2

Sensor 3

36

Responsive to alerts

•  E.g. Kernel panic
•  Nagios sends an alert to the controller

indicating that the sensor’s process is down
•  Controller sends a port DOWN message to

the switch, allowing the controller to behave
the same way as if the link actually went
down

Sensor 1

Sensor 2

Sensor 3
IU Network Traffic

2. Down
Sensor 1
interface Nagios

1. Kernel Panic!

OpenFlow
Switch

37

Responsive to alerts

•  E.g. Kernel panic
•  Nagios sends an alert to the controller

indicating that the sensor’s process is down
•  Controller sends a port DOWN message to

the switch, allowing the controller to behave
the same way as if the link actually went
down

Sensor 1

Sensor 2

Sensor 3
IU Network Traffic

Nagios

OpenFlow
Switch

38

Sensor 12
Sensor 12

Default IP
and IPv6

Bro
Sensors

Snort Sensors
Mirrored
Sensors 1- 7

Default IP
and IPv6

IUB Controller
IUPUI Controller

Sensor 1

Sensor 2

Sensor 7

Sensor 8

Sensor 11

Pronto
Switch

Sensor 1

Sensor 7

Sensor 8

Sensor 11

IBM Switch

Bro
Sensors

Snort Sensors
Mirrored
Sensors 1- 7

tunnel

Sensor 2

39

Results – Load Distribution

40

Results – Load Distribution

41

Results – Mirroring

42

Summary

ü  Load Distribution
ü  Resilience
ü  Mirroring
ü  Responsive to external alerts

43

Limitations and future work

•  Limitations
•  Session breaking
•  Most software is still beta
•  IPv6

•  Future work
•  More fine-grained flows
•  Distribute flows based on weight of

each sensor

44

IDS cluster hardware

•  Dell R510 – manager
o  12 core / 24 GB / 1.5 TB

•  Dell R310 – OpenFlow controller
•  Dell R410 (12) – workers

o  12 core / 24 GB / 300 GB SAS
o  Myricom 10Gb NIC
o  HP Direct-Attach Cables

•  FreeBSD 8
•  Configuration management with Master

Source
•  Intra-cluster networking via private VLAN
•  Load balanced traffic received via HP DAC

45

Another layer of load balancing –
Myricom Sniffer10G

l  Multiple ring buffers presented to OS
l  Can perform IP-based load balancing or

duplicate traffic to all rings
l  Myricom provides a libpcap wrapper
l  Sniffer10G controlled by environment

variables

l  Libpcap wrapper obscures per-ring stats
l  Hard to gauge packet loss in snort
l  Myricom provides tools to read packet

counters and measure bandwidth at the NIC

46

Software stack

l  Bro = Network analysis framework
l  Programmable
l  Acts like a protocol parser/logger

l  Bro running on nodes 1-7
l  10 workers per node

l  Snort = packet grepper extraordinaire
l  Snort running on nodes 8-11

l  7 snort instances per node
l  Node 12 monitor IPv6 traffic and catchall

IPv4 traffic
l  Node 12 is also our “tcpdump” host

47

Performance numbers

l  IUB : 1.5 million pkt/sec / 3 Gb/s average
l  IUB : Currently 500-750k / 1.5 Gb/s average
l  Bro capture_loss

l  3-5%
l  Short term spikes above 10%

48

Future cluster improvements

l  FreeBSD Netmap
l  Automate OS builds with NanoBSD
l  Expand Bro usage
l  Use Snort for heavy packet inspection

l  Think DLP

49

Thank you.

•  Keith Lehigh: klehigh@iu.edu

•  Ali Khalfan: ali.khalfan@gmail.com

•  InCNTRE : incntre.iu.edu

•  FlowScale : www.openflowhub.org/display/
FlowScale/FlowScale+Home

